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ABSTRACT

Over the past decades, significant changes in temperature and precipitation have been observed, including

changes in the mean and extremes. It is critical to understand the trends in hydroclimatic extremes and how

they may change in the future as they pose substantial threats to society through impacts on agricultural

production, economic losses, and human casualties. In this study, we analyzed projected changes in the

characteristics, including frequency, seasonal timing, and maximum spatial and temporal extent, as well as

severity, of extreme temperature and precipitation events, using the severity–area–duration (SAD) method

and based on a suite of 37 climate models archived in phase 5 of the Coupled Model Intercomparison Project

(CMIP5). Comparison between the CMIP5 model estimated extreme events and an observation-based

dataset [Princeton Global Forcing (PGF)] indicates that climate models have moderate success in re-

producing historical statistics of extreme events. Results from the twenty-first-century projections suggest

that, on top of the rapid warming indicated by a significant increase in mean temperature, there is an overall

wetting trend in the Northern Hemisphere with increasing wet extremes and decreasing dry extremes,

whereas the Southern Hemisphere will have more intense wet extremes. The timing of extreme precipitation

events will change at different spatial scales, with the largest change occurring in southern Asia. The prob-

ability of concurrent dry/hot and wet/hot extremes is projected to increase under both RCP4.5 and RCP8.5

scenarios, whereas little change is detected in the probability of concurrent dry/cold events and only a slight

decrease of the joint probability of wet/cold extremes is expected in the future.

1. Introduction

Understanding the changing characteristics of climate

extremes (e.g., droughts, floods, heat waves, and cold

spells) is critical, as they pose substantial threats to water

(Palmer 2013), food (Wheeler and Von Braun 2013;

Lobell and Gourdji 2012; He et al. 2019), energy

(Mideksa and Kallbekken 2010), and economic security

(Mendelsohn et al. 2006; Stern 2013). Significant changes

in the mean state of temperature T and precipitation P

have been well documented (e.g., Easterling et al. 2000;

Alexander 2016). There is also evidence that their extreme

states are becoming more frequent and intense (e.g.,

Goswami et al. 2006; Barriopedro et al. 2011; Seneviratne

et al. 2012). For instance, there is medium confidence that

the frequency andduration of heatwaves/warm spells have

increased over most land areas (IPCC 2013). Compared to

temperature, historical changes in mean and extreme

precipitation have been more uncertain and gener-

ally are not significant relative to natural variability

(Alexander 2016). Nevertheless, significant increases in
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the magnitude of observed daily extreme precipitation

have been reported in North America and high latitudes

of the Northern Hemisphere (NH) (Trenberth 2011) as

well as many other regions (see IPCC 2013; Alexander

2016). Looking into the future, a growing body of re-

search indicates that the characteristics of temperature

and precipitation extremes will continue to change un-

der anthropogenic climate change (Sillmann et al. 2013b;

Toreti et al. 2013; Trenberth et al. 2015). Furthermore,

regional studies (e.g., Westra et al. 2013) have identified

an increase in frequency and intensity of daily precipita-

tion amounts based on climate extremes indices recom-

mended by the World Meteorological Organization’s

(WMO’s) Expert Team on Climate Change Detection

and Indices (ETCCDI; Zhang et al. 2011).

Global climate models, also referred to as general

circulation models (GCMs), are frequently used in cli-

mate studies. In general, GCMs have moderate success

in reproducing historical climate statistics, with room for

substantial improvement (Sillman et al. 2013a; Sheffield

et al. 2013a,b; C. Wang et al. 2014). Errors in simulated

temperature and precipitation remain large, especially

in the tropics (Kharin et al. 2013; Aloysius et al. 2016).

With the release of the most recent climate simulations

from the state-of-the-art coupled GCMs involved in

phase 5 of the Coupled Model Intercomparison Project

(CMIP5; Taylor et al. 2012) and updated prescribed

emission scenarios known as representative concentra-

tion pathways (RCPs; van Vuuren et al. 2011), further

studies to advance our knowledge on projected climate

extremes have been possible. Many studies have com-

pared and evaluated the capability of the CMIP5 GCMs

in simulating global (e.g., Sillmann et al. 2013a) and

regional (e.g., Sheffield et al. 2013a,b) climate against

gauge and satellite-based observations as well as re-

analysis. Improved skill in CMIP5 compared to its pre-

decessor CMIP3 (Meehl et al. 2007) confirms that

updates to climate models do improve performance

(Sillmann et al. 2013a). However, due to the inherent

uncertainties of each single GCM, the multimodel,

multiensemble average generally provides more reliable

and robust estimates than each individual model (Tebaldi

and Knutti 2007). Further efforts have also been made to

select a subset of models to represent the mean and

variability of climate change due to computational con-

straints or the need to exclude poorly performing models

(e.g., Evans et al. 2013, 2014; Cannon 2015).

To date, a number of studies have investigated the

changing behavior of climate extremes (see above). A

few studies have investigated in depth the range of

characteristics of extremes, such as changes in the total

occurrence, highest severity, longest duration, and

maximum spatial extent. These are important because,

for example, the maximum extent of an extreme is of

great relevance to regional impact assessment as well

as mitigation and adaptation strategies for decision

makers. Among the few relevant studies, Vidal et al.

(2012) found that the frequency, total magnitude,

mean duration, and area of meteorological drought

events in France will increase in the twenty-first cen-

tury based on the downscaled climate projections from

the ARPEGE GCM under three emission scenarios

taken from the Special Report on Emissions Scenarios

(SRES; Nakicenovic and Swart 2000). Through a re-

gional case study, Barriopedro et al. (2011) found that

summer mega-heatwaves in Europe with similar mag-

nitude and spatial extent as the 2003 and 2010 events

will be 5–10 times more likely in the coming 40 years.

Besides droughts and heatwaves, there are many other

studies examining the changing characteristics (e.g.,

frequency and long-term trend) of the flip side of these

extremes, including floods (or wet extremes;Milly et al.

2002; Hirabayashi et al. 2013; Arnell and Gosling 2016;

He et al. 2020) and cold spells (e.g., Kodra et al. 2011;

de Vries et al. 2012). More recently, there is a growing

interest in compound events (e.g., joint occurrence of

precipitation and temperature extremes), whose soci-

etal and environmental impacts can be exacerbated

and exceed the sum of each individual type’s impact

(e.g., Leonard et al. 2014; Sarhadi et al. 2018), due to

the nonlinear dependence structure (Zscheischler and

Seneviratne 2017; Moftakhari et al. 2017; Hao et al.

2018). However, analysis in these studies is generally

performed at the pixel level and ignores the dynamic

nature of hydrological extremes, whose duration, se-

verity, and spatial extent both evolve through space

and time. Ignoring the spatial–temporal relationships

in the interlinked characteristics of extremes may lead

to an underestimation of the compounding impacts,

especially under climate change, which influences not

only the trend and variability of individual extremes,

but also the joint dependence structure between dif-

ferent extremes. Our study aims to address this issue

leveraging on recent advances in extreme event iden-

tification (e.g., see details below on the severity–area–

duration analysis), which can identify spatially and

temporally contiguous wet/dry and hot/cold extremes

and how theymerge or break up through space and time.

In this study, we investigate how univariate and bi-

variate climate extremes are expected to change in the

future by analyzing the characteristics of extreme tem-

perature and precipitation events over global land re-

gions based on 37 climate model simulations carried out

under the CMIP5 experiment. An extreme event is de-

fined here as a multimonth and spatially extensive

anomaly in precipitation and temperature, rather than a
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daily or subdaily extreme value at the gridpoint scale,

which is typically used in climate change studies. These

large-scale events often have the largest impacts in

human and economic terms and are thus worthy of

studying. We compare the regional occurrence and

characteristics of wet/dry and hot/cold extremes in the

period 1961–2003, as represented by climate model

historical simulations, to an observation-based dataset,

Princeton Global Forcings (PGF; Sheffield et al. 2006).

The near-term (2009–51) and long-term (2057–99)

projections in the twenty-first century are evaluated

relative to the historical period (1961–2003). Simulated

changes in precipitation and temperature extremes, as

well as concurrent dry/wet and hot/cold events from the

37 climate models under two future climate scenarios,

RCP4.5 and RCP8.5, are analyzed to represent plau-

sible emissions pathways.

2. Datasets

a. CMIP5 models

We use monthly precipitation and temperature data

from the first ensemble member (r1i1p1) of 37 GCMs in

the CMIP5 archive (Taylor et al. 2012). A list of the cli-

mate models used in this study is provided in Table S1 in

the online supplemental material. We divide the twenty-

first century into two 43-yr periods (January 2009–

December 2051 and January 2057–December 2099) and

compare each projection period relative to the historical

period (January 1961–December 2003) of the same

length for the two emission scenarios (van Vuuren et al.

2011), RCP4.5 (moderate emission) and RCP8.5 (high

emission). RCP4.5 assumes stabilized radiative forcing

at 4.5Wm22, equivalent to approximately 650 ppm

CO2, in the year 2100 without ever exceeding that value

(Thomson et al. 2011), while RCP8.5 assumes the

highest rate of increased greenhouse gas concentra-

tions within this set of RCPs. All temperature and

precipitation data are preprocessed to have the same

0.58 3 0.58 spatial resolution using bilinear interpola-

tion to match the PGF data.

b. Observation-based dataset

The observational reference precipitation and tem-

perature are obtained from the surface meteorological

data from the V2 version of the PGF dataset (Sheffield

et al. 2006), which consists of 3-hourly, 0.258 resolution
fields of near-surface meteorology for global land areas

from 1948 to 2010. PGF merges the NCEP–NCAR re-

analysis with satellite–gauge precipitation from the

Global Precipitation Climatology Project (GPCP; Adler

et al. 2003), satellite-based precipitation from the Tropical

Rainfall Measuring Mission (TRMM) Multisatellite

Precipitation Analysis (TMPA; Huffman et al. 2007),

the Climatic Research Unit (CRU) monthly precipita-

tion and temperature gauge analyses (New et al. 2000;

Harris et al. 2014), and the Surface Radiation Budget

(SRB) radiation dataset (Stackhouse et al. 2004). PGF

offers multiple variables that can be used to drive land

surface models including precipitation, temperature,

pressure, downward surface shortwave and longwave

radiation, specific humidity, and wind speed. The data-

set has been extensively used in regional and global

studies of climate and hydrology applications (e.g.,

Sheffield and Wood 2008; Wang et al. 2011; He et al.

2020). PGF provides reliable, multidecadal information

about the global climatology and variability of precipi-

tation and temperature under current climate condi-

tions. We aggregate this dataset to 0.58 and monthly

resolution to match the climate model data.

3. Methods

a. Standardized indexes

We calculate standardized indices for both temper-

ature and precipitation as indicators of dry/wet and

cold/hot conditions for the observed and simulated

historic periods, as well as the simulated future periods.

Results are presented for 19 subcontinental land re-

gions with different climatic regimes, covering the

global land surface excluding Greenland (GRL),

southeastern Asia (SEA), and extremely dry regions

with annual rainfall amount less than 50mm; that is,

desert regions, including the Sahara, Arabian, Atacama,

Iranian, and Taklamakan Deserts (Fig. 1). We do not

consider the SEA region because our approach relies on

analyzing spatially connected regions experiencing ex-

tremes, and this region is too disconnected to allow this.

We adopt the subcontinental regions defined by Giorgi

and Francisco (2000). Sheffield (2008) modified their

GRL region to exclude the interior of Greenland and

renamed GRL as northeastern Canada (NEC).

We calculate the standardized temperature index

(STI) and standardized precipitation index (SPI) re-

spectively for the historical period. The projections of

STI and SPI for the twenty-first century are calculated

based on the assumption that they have the same em-

pirical cumulative probability distribution as the his-

torical period. Procedures to calculate the SPI and STI

are briefly described below.

1) STANDARDIZED PRECIPITATION INDEX

The SPI is a standardized measure of precipitation

departure based on the empirical probability distribution

1 JULY 2020 ZHAN ET AL . 5653

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/25/22 03:03 PM UTC



function and can be calculated at various time scales

allowing for aggregation of precipitation extremes at

monthly to multiyear scales. It has been recommended

by the World Meteorological Organization (WMO

2012) as the preferred drought indicator, but can equally

represent extreme wet conditions. Mathematically, the

precipitation time series of a given grid cell is modeled

with a gamma distribution:

f (a,b)5
ba

G(a)
xa21 e2bx ,

where G(�) is the gamma function, x is the precipitation

amount at certain time scales (e.g., monthly), a is the

shape parameter, and b is the scale parameter; a and

b are estimated through maximum likelihood estima-

tion. The cumulative probability of the gamma distri-

bution is then transformed to the equivalent number of

standard deviations assuming a standard normal dis-

tribution. Following the commonly used classification

based on the SPI (McKee et al. 1993), we adopted a

threshold value of21.0 for drought and a value of 1.0 for

floods, below (above) which a region is considered as dry

(wet) conditions (He et al. 2020).

2) STANDARDIZED TEMPERATURE INDEX

The standardized temperature index (STI) is defined

in a similar manner to the SPI by Hansen et al. (2012). It

measures the deviation of temperature from themean in

units of standard deviation. Instead of a gamma distri-

bution in the calculation of SPI, STI assumes a normal

distribution for the anomaly of the temperature time

series after removing the seasonal cycle (Hansen et al.

2012). It has been used previously as a temperature in-

dicator in climate variability studies to understand the

role of climate extremes (Zscheischler et al. 2014). We

use the same SPI thresholds as defined for dry/wet

conditions. That is, if a grid cell has a STI value

smaller (larger) than 21 (1) in a specific month, it is

recognized as experiencing a cold/hot wave.

b. Severity–area–duration analysis

The severity–area–duration (SAD) analysis (Andreadis

et al. 2005) is used to define spatial–temporal drought

risk (severity) but can equally be used to define flood

risk. The analysis begins with the identification of spatial

clusters of the extreme at each time step based on se-

verity and spatial coherency. A grid cell is defined as

experiencing an extreme event if it has a standardized

index (SPI or STI) larger than 1 for wet/hot extremes

(smaller than 21 for dry or cold extremes). Following

the threshold value for a minimum cluster extent

adopted in previous studies (Zhan et al. 2016; He et al.

2020), the algorithm identifies spatial clusters consisting

of at least 150 spatially contiguous grid cells (equivalent

to approximately 3.753 105 km2) experiencing extreme

conditions. The analysis is carried out for each of 19

subcontinental climate regions shown in Fig. 1. The

identified clusters are then linked in time based on

the extent of overlapping area between time steps.

Following this step of temporal tracking, a number of

extreme events are identified allowing for merging and

splitting between clusters. The dry/wet and hot/cold

clusters identified in the SAD analysis are also used to

identify concurrent precipitation and temperature ex-

treme events. After the extreme events are identified

based on 3-month SPI (SPI3) or 3-month STI (STI3),

we analyze the identified events with respect to fre-

quency of occurrence, duration, and maximum area. It

should be noted that our estimates are focused on sea-

sonal extreme events using a 3-month window, as these

events have larger impacts on long-term agricultural

activities (e.g., irrigation, planting practices) and water

management, although we acknowledge that week-

scale heat waves and day-to-week-scale floods also

have large societal impacts. Moreover, selection of a

common temporal scale (i.e., 3 months) enables us to

quantify and compare different types of extremes in a

consistent way.

In the SAD analysis, severity S at time step t is de-

fined as

S
t
5 12

�
t2T11

t

F(jSIj)
T

, SI 2 fSTI, SPI g,

FIG. 1. Map showing the 19 subcontinental climate regions used

in the analysis. ALA: Alaska; WNA: western North America;

CNA: central NorthAmerica; ENA: easternNorthAmerica; NEC:

northeastern Canada; CAM: central America; AMZ: Amazon;

SSA: southern South America; MED: Mediterranean; NEU:

northern Europe; WAF: western Africa; EAF: eastern Africa;

SAF: southern Africa; NAS: northern Asia; CAS: central Asia;

TIB: Tibet; SAS: southern Asia; EAS: eastern Asia; AUS:

Australia.
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where F(�) denotes the cumulative probability density

(assuming a standard normal distribution), T is pre-

defined at a 3-month time scale, and SI denotes either

SPI or STI depending on the variable in question. Prior

to the SAD analysis, a median filter is applied to the se-

verity maps for spatial smoothing, as done in the original

SAD algorithm (Andreadis et al. 2005). The SAD

analysis is conducted for each extreme event using the

following steps:

(i) Locate the maximum severity grid cell, hereby

referred to as the ‘‘center’’.

(ii) Identify the grid cell with the next highest severity

that is contiguous to the center with severity that

exceeds the threshold.

(iii) Search for the grid cell with the next highest

severity that is contiguous to the grid cells currently

identified, and calculate the average severity of the

grid cells.

(iv) Continue adding the next most severe grid cells

until all contiguous grids exceeding the threshold

are included.

For a specified extreme event duration, the SAD curve is

defined as the envelope of the most severe events as a

function of the event extent (i.e., area), as shown in

Fig. S1. The regional SAD envelope curve represents

the most extreme spatiotemporal evolution of all ex-

treme events for that particular region. It is usually

composed of portions of different events that have the

most severity over an area given the specified duration.

Here we focus on the 3-month time scale (t 5 3) only.

Each point in the SAD envelope curve represents the

maximum severity of its corresponding spatial extent

and temporal duration. Further information on SAD

analysis can be found in Andreadis et al. (2005).

4. Results

a. Simulated historical climate extremes

Comparing the cumulative distribution function

(CDF) of monthly spatial extent of temperature and

precipitation extremes in the twenty-first century in

Fig. S2, the CDF curve based on PGF matches well with

the CMIP5 multimodel ensemble mean for both tem-

perature and precipitation extremes. Detailed time se-

ries showing future projected areas under temperature

and precipitation extremes are shown in Figs. S3 and S4,

respectively.

1) NUMBER OF DRY AND WET EVENTS

Table 1 summarizes the statistics of dry and wet events

in terms of the 95% confidence interval of themultimodel

ensemble. The frequency of regional short-term dry

and wet extreme events is underestimated by the

CMIP5 models except for a few regions that include

AMZ, WNA, and ALA (see Fig. 1 for regions and

abbreviations). NAS and NEC had the most occur-

rence of dry and wet events in the historical period. The

occurrence of short-term (1–6-month duration) and

midterm (7–11-month duration) events in NAS is un-

derestimated while they are overestimated in NEC by

the CMIP5 models. For long-term (121-month dura-

tion) events, the frequency of regional precipitation

extreme events is better reproduced by the CMIP5

models in extratropics in the Northern Hemisphere.

Fewer dry and wet events are reproduced by the

CMIP5 models in AUS due to more frequent occur-

rence of short to midterm events.

2) MAXIMUM SPATIAL EXTENT AND DURATION

OF EXTREME EVENTS

Figure 2 shows the maximum duration and spatial

extent of dry and wet extremes estimated by CMIP5

models. In general, the maximum spatial extent and

temporal duration of the precipitation extreme events

from the CMIP5models are fairly consistent with results

from the PGF derived SPI maps. The maximum dura-

tion of dry and wet extremes is relatively better esti-

mated compared to the maximum spatial extent. The

maximum duration of dry and wet extremes from the

reference PGF dataset falls within 25th and 75th quan-

tiles of theCMIP5model estimates in 8 and 9 regions out

of 19, respectively. Only 3 and 6 regions, respectively for

dry and wet extremes, have an estimated interquartile

range covering the observedmaximum spatial extent for

dry and wet extremes. The duration of the longest dry

and wet extreme events is slightly overestimated by

the CMIP5 models with larger differences in the high-

latitude regions [e.g., underestimated maximum dura-

tion of wet extreme events in NEC]. On the other hand,

the area of the most spatially extensive event is more

accurately estimated, partly because this is bounded

above at 1.0 (extreme events cover the entire region).

Nevertheless, the maximum duration and spatial extent

of individual events in the PGF generally lie within the

range of the CMIP5 multimodel ensembles. Out of the

19 regions evaluated, the observed maximum duration

(area) of wet extremes falls within one standard devia-

tion of the climate model ensembles in 12 (11) regions.

For dry extremes, the observed maximum duration

(area) falls within 1 standard deviation of the climate

model ensembles in 7 (5) regions. Larger discrepancies

are found for wet extremes than dry extremes with

overestimated maximum spatial and/or temporal extent

inmost regions except for ALA,AMZ, CNA,WNAand
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Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/25/22 03:03 PM UTC



NAS. Regions with the largest uncertainty range of the

maximum duration from CMIP5 models are NAS and

AMZ. This is most likely because the two regions are

relatively larger than the other regions (14.73 1012 and

12.9 3 1012 km2, respectively), which allows for more

diverse depiction of precipitation extremes.

3) SAD CURVES FOR DRY AND WET EXTREMES

Figures 3 and 4 show 3-month SAD envelope curves

that represent the maximum severity across different

spatial extents for dry and wet extremes, respectively. In

general, the multimodel ensemble can well replicate the

maximum severity of observed precipitation extremes.

Exceptions include the overestimated severity of dry

and wet extremes in SAS. The severity of wet extreme

events is better estimated by the CMIP5models than the

dry extremes. The slight overestimation in the severity

of dry extreme events is found in TIB, EAF, ALA,

and CAM.

Overall, the CMIP5 multimodel ensemble has mod-

erate success in estimating the trend and spatiotemporal

characteristics of temperature and precipitation ex-

treme events in the historical period (1961–2003). This

provides us with moderate confidence in the reliability

of the CMIP5 models in simulating extremes.

b. Projected future changes in temperature extremes

Figure S3 shows the projected time series of land area

under hot and cold extremes in the near-term (2009–51)

and long-term (2057–99) twenty-first century. It is clear

that the spatial and temporal extent of hot events are

projected to increase significantly in the next decades

under the RCP4.5 emission scenario, which is consistent

with many previous studies (e.g., Cheng et al. 2015). By

the end of the twenty-first century,;83.4% of the global

land area is projected to experience high temperature

above one standard deviation of the temperature cli-

matology in the historical period, under the RCP4.5

emission scenario, while 86.7% is projected under the

RCP8.5 emission scenario (see Fig. S3). On average,

global air temperature is expected to increase by 1.438
and 4.798C, from 10.758 to 12.188 and 15.548C, respec-
tively (shown in Fig. 5).

It is worth noting that there are seasonal variations of

the fractional area experiencing hot and cold events

(Fig. S3). This suggests that on top of the increasing

trend in annual mean temperature, there is more rapid

warming during June–August (JJA) than December–

February (DJF) in the extratropics. Despite the fact

that a warming trend tends to produce more statistical

anomalies in summer than winter, differences in vari-

ability aremore pronounced inwinter seasons, producing a

seasonal cycle in 1-sigma anomalies. In addition, the large

difference in land area in the northern and southern

hemispheres could also create a seasonal cycle at the global

scale. Furthermore, the fractional area of hot extremes

has stronger seasonal fluctuations compared to that

for cold extremes in the Northern Hemisphere, which

suggests asymmetry in projected increases in extreme

temperature distributions in the Northern Hemisphere.

TABLE 1. Number of short-term (1–6 month), midterm (7–11 month), and long-term (121month) dry and wet extreme events in PGF

and CMIP5 models in the historical period (1961–2003). The 95% confidence interval of the estimated frequency by CMIP5 models is

provided in parentheses.

Dry Wet

Short-term Midterm Long-term Short-term Midterm Long-term

CAS 25 (33–37) 6 (8–9) 0 (1–2) 36 (38–43) 7 (8–9) 1 (1–1)

WAF 20 (37–41) 3 (7–9) 0 (0–1) 32 (39–43) 15 (7–9) 2 (0–1)

NEU 31 (40–44) 7 (7–9) 0 (1–1) 43 (42–46) 5 (8–9) 0 (1–1)

NAS 85 (72–79) 17 (22–25) 8 (7–8) 87 (77–83) 29 (23–25) 4 (8–9)

CNA 23 (26–29) 1 (5–6) 0 (0–1) 31 (30–33) 2 (4–6) 0 (0–1)

TIB 29 (30–34) 2 (2–3) 0 (0–0) 35 (32–35) 0 (3–4) 0 (0–0)

AUS 23 (26–30) 8 (8–10) 0 (2–3) 34 (35–39) 7 (8–10) 1 (2–3)

NEC 49 (64–68) 8 (7–8) 1 (0–1) 69 (74–78) 5 (6–8) 1 (0–1)

SAS 22 (28–31) 1 (4–6) 0 (0–1) 24 (35–38) 2 (4–5) 0 (0–0)

EAF 23 (33–37) 7 (7–9) 0 (1–2) 19 (36–40) 5 (7–9) 1 (1–2)

CAM 7 (16–18) 0 (1–2) 0 (0–0) 15 (19–21) 0 (1–2) 0 (0–0)

MED 24 (25–27) 2 (3–4) 0 (0–0) 25 (29–32) 1 (2–3) 0 (0–0)

EAS 38 (46–50) 8 (10–12) 0 (1–2) 42 (51–56) 7 (10–12) 0 (1–2)

SSA 29 (36–40) 4 (7–8) 1 (1–1) 42 (39–43) 2 (6–8) 0 (1–1)

ALA 39 (37–41) 7 (7–8) 1 (1–2) 48 (41–45) 9 (7–9) 1 (1–2)

ENA 25 (23–26) 0 (2–3) 0 (0–0) 20 (24–27) 2 (2–3) 0 (0–0)

SAF 17 (29–32) 2 (6–7) 0 (0–1) 30 (33–36) 5 (5–7) 0 (0–1)

AMZ 45 (35–40) 15 (11–13) 1 (3–4) 54 (40–46) 14 (12–14) 4 (3–4)

WNA 45 (42–46) 3 (11–12) 1 (1–2) 51 (44–48) 6 (10–12) 0 (1–2)
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Stronger asymmetry is found in projections under the

RCP8.5 scenario than RCP4.5 that has been noted

previously (Kodra and Ganguly 2014). There is a lon-

ger upper tail found in the projected temperature dis-

tribution in JJA than in DJF (as illustrated in Fig. 13),

indicating a larger increase in JJA temperature vari-

ability than DJF temperature as compared to the

historical period.

c. Projected future changes in precipitation extremes

Figure S4 shows the time series of projected spatial

extent for dry and wet extremes in the twenty-first

century. Globally, by 2099, the spatiotemporal extent

of dry events will slightly decrease, while the wet area

is expected to expand significantly from 15.9% in the

historical period to 26.7% and 32.5% by the end of the

twenty-first-century projection under the RCP4.5 and

RCP8.5 (not shown) emission scenarios, respectively.

Different from the rapid warming over global land

regions, the direction of projected changes in pre-

cipitation extremes is different in the tropics, sub-

tropics, and extratropical regions (shown in Fig. 5).

Generally speaking, slight positive trends occur in

Asia, Europe, North America, and tropical Africa and

negative trends (drying) occur in southern Africa,

South America, and Australia. However, statistically

significant trends in monthly precipitation at the two-

sided p value of 0.05 level are restricted to relatively

small areas within these land regions. Similar to the

projected precipitation amount (Knutti and Sedlá�cek
2013), projected extreme precipitation events in CMIP5

models have larger uncertainties compared to temper-

ature. Compared to the projected trends in soil moisture

(Sheffield 2008; based on CMIP3 models), the wetting

trends in South America, eastern Africa, and western

Australia are coincident with statistically significant in-

creasing trends in soil moisture, suggesting the dominant

role of precipitation in controlling soil moisture content

FIG. 2. Maximum temporal duration and maximum spatial extent for dry and wet extreme events in PGF and CMIP5 models during the

historical period (1961–2003).
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in these regions despite the increasing evapotranspira-

tion driven by higher temperatures (Vicente-Serrano

et al. 2014; Berg and Sheffield 2018). Similar to the

asymmetry found in the projected temperature distri-

bution, projected changes in the seasonal variability of

precipitation extremes also vary by season. During JJA,

there is a smaller increase in both the lower and upper

tails for monthly precipitation as compared to the DJF

months. This suggests a smaller increase in JJA pre-

cipitation variability than DJF precipitation when

compared to their variability in the historical period.

We next investigate trends in the characteristics (oc-

currence, magnitude, and severity) of the regional

largest dry and wet events in the twenty-first century.

1) DRY EVENTS

The predicted future changes in short-term drought

occurrence are generally decreasing in many regions, as

is shown in the statistics in Table S2. In general, dry

events are more persistent in the future projections

when compared to the historical period. This is indicated

by a decrease in the number of short-term (1–6-month

FIG. 3. The 3-month SAD curves for 1-sigma dry extremes in the historical period (1961–2003) from CMIP5 single model (gray line) and

multimodel ensemble mean (blue line) as compared to PGF (black line).

FIG. 4. As in Fig. 3, but for wet extremes.
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duration) droughts and an increase in the occurrence

of mid (7–12-month duration) to long-term (121-

month duration) droughts. Increased drought fre-

quency is seen in CAM and MED regions for both

scenarios regardless of drought duration. These re-

gions coincide with the regions projected to have

lower average SPI in the future. In other words,

drought clusters in regions that are projected to be

drier (decreasing monthly precipitation) will experi-

ence more frequent dry extremes, especially short-

term events with smaller spatial extents. However, in

SAF, where SPI is also projected to decrease in the

future, there will be more midterm to long-term

events with larger spatial extents. A large part of Asia

and Europe, including NAS, SAS, EAS, TIB, and

NEU, will have fewer drought events. Note that pre-

cipitation in NAS will decrease in the mean while

there is little change in mean precipitation in SAS.

This suggests a decrease in the mean and an increase

in variability in NAS, whereas in SAS there is only

increasing variability but little change in the mean

value. In addition, decreasing drought occurrence also

applies for AUS and CNA.

Changes in the estimated maximum extent of the

most temporally and spatially extensive dry/wet events

from CMIP5 models are shown in Fig. 6. Regions that

are expected to experience significant decreases in

temporal persistence and spatial extent include ALA,

EAS, NAS, ENA, NEC, TIB, and NEU. Slight in-

creases in the magnitude of temporal and spatial extent

are found in AMZ, SAF, AUS, and CAM. This is

consistent with our analysis in the projected trends in

precipitation.

Figure 7 shows the projected 3-month SAD curves of

dry extremes at the global scale for short-term and

long-term simulations. Results demonstrate that in

the high-latitude regions, such as ALA, NEC, and

NAS, maximum severity will decrease across spatial

scales. Specifically, decreases can be found in NAS and

NEC in the coming decades during the first half of

the twenty-first century without further decreases in

the second half of the twenty-first century. In ALA, the

maximum severity of drought events will continue to

decrease after the 2009–51 period. Overall, differences

between the RCP4.5 and RCP8.5 emission scenarios

are small. The midlatitude regions in the Northern

Hemisphere (WNA, CAN, ENA, MED, CAS, TIB,

EAS, SAS) show little change in maximum severity,

which is not true in the RCP8.5 high-emission scenario

from 2057 to 2099. This also applies to tropical Africa

(WAF and EAF) and AUS. However, no statistically

significant changes are found in these regions under the

RCP4.5 scenario. Regions that will experience more

severe droughts include CAM, AMZ, and SAF across

all the spatial scales, which is due to an increase in the

drought center severity with relatively similar severity

gradient with respect to area. Major differences appear

in the magnitude of severity increase across scenarios,

as we increase the emission level from moderate to

high. Such scenario dependence confirms recent findings

FIG. 5. Spatial patterns of global temperature and precipitation changes as indicated in mean STI and SPI in the

near term (2009–51) and long term (2057–99) under the RCP4.5 emission scenario.
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by Alden et al. (2016). In the meantime, it also provides

further evidence that increases of seasonal dry extremes

in the Amazon, as indicated by the 3-month SPI, are

correlated with the rate of increasing temperature and

the global carbon budget.

The SAD curves in Fig. 7 summarize the highest se-

verity of the extreme events across different spatial

scales. However, the event that contributes to the SAD

curve at different spatial scales might be different since

different events have different severity at the ‘‘event

center’’ and with a different severity gradient as we ex-

pand around the center. We further examine the sea-

sonal timing of the contributing events at different

spatial scales (Fig. 8), comparing the historical timing

with the observations and for the future period under

RCP8.5. For the RCP8.5 scenario, major changes are

found in the timing when the most severe events occur

across spatial scales in a number of regions, while

the RCP4.5 scenario (not shown) exhibits similar

characteristics. Out of the three regions in the high

latitudes, namely ALA, NEC, and NAS, with in-

creasing drought severity, the timing of the most se-

vere drought events will most likely shift in NAS from

autumn/winter to spring/summer. In the historical

period, the most severe drought events occur around

October according to PGF, which are well reproduced

by the CMIP5 models. For the long-term projection

(2057–99), September droughts will increase in severity

and start to exceed the severity of March droughts at

small spatial extents near the drought center in the

short-term (2009–51) projection. By the end of the

twenty-first century under the RCP8.5 emission scenario,

September droughts will have the highest severity across

all spatial scales up to the maximum spatial extent of

drought events.

No significant changes in the timing of the most se-

vere events are observed in CAM, AMZ, and SAF as

the maximum drought severity increases. The three

FIG. 6. Projected maximum temporal duration and maximum spatial extent of dry extreme events in the near term (2009–51) and long

term (2057–99) in CMIP5 models compared to the historical period (1961–2003).
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regions would suffer from more severe droughts in the

same drought-prone seasons than the historical period.

However, this does not apply for a number of midlat-

itude and tropical regions, including WNA, SSA,

MED, NEU, and SAS. Although there are no signifi-

cant changes in the maximum drought severity, the

timing of the most severe events most likely will shift;

for example, from autumn (August–October) to spring

(February–March) in WNA, and from autumn (around

May) to early summer (October–December) in SSA.

Notably, in SAS, more models agree that the most severe

droughts are expected in the late season [September–

November (SON)] as opposed to the early season [March–

May (MAM)]. However, droughts in the early growing

season will increase in severity according to the CMIP5

simulations. The early-season drought severity will exceed

FIG. 7. Projected 3-month SAD curves of dry extremes in the near term (2009–51) and long term (2057–99) in CMIP5 models under

RCP4.5 scenarios compared to the historical period (1961–2003). The shaded area represents one standard deviation from multimodel

mean. Lines in the bottom of each panel indicate the spatial scales at which changes in severity are statistically significant at the 95%

confidence interval in the two-sample Kolmogorov–Smirnov test between CMIP5 ensembles and PGF. Results showing the differences

between RCP4.5 and RCP8.5 can be found in Fig. S5 in the online supplemental material.

FIG. 8. Timing of the dry extreme events contributing to the 3-month SAD curves as in Fig. 6 for the historical period (1961–2003, left)

and long-term (2057–99, right) future projections from CMIP5 models (RCP8.5 scenario). Color shading represents the percentage of

models that predict (project) the same months of the most severe drought event.
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the late-season severity at mid to large spatial scales by the

end of the twenty-first century.

2) WET EVENTS

Similar to the changes in drought occurrence, as in-

dicated from the statistics in Table S2, the wet events in

the twenty-first century will also be more temporally

persistent. Most regions will expect less short-term wet

events, except CNA, ENA, TIB, SAS, and MED. In all

regions except for NAS, the number of mid- to long-

term wet events will increase. Changes in the frequency

of wet events in the NAS region appear to be different

from the rest of the global land area, with less wet events

of short to middle duration in the twenty-first century.

This is because NAS will aggressively extend both spa-

tially and temporally due to its largest projected in-

creases in precipitation, resulting in more long-term wet

extremes especially during the first half of the twenty-

first century. Figure 9 shows the projected change in

maximum temporal and spatial extent for wet events.

The maximum spatial extent of wet events almost covers

the entire NAS region by the end of the twenty-first cen-

tury under the RCP4.5 emission scenario. Furthermore,

this projection is consistent across all 37 CMIP5 climate

models included in this study. The regions with increasing

drought extent (e.g., CAM, AMZ, SAF, and AUS) will

have little or small decrease in maximum extent for wet

events in the twenty-first century. Meanwhile, mid- to

high-latitude regions with decreasing drought extent will

expect larger and longer wet events in the future, along

with tropical and Southern Hemisphere regions with no

significant changes in drought extent. The magnitude of

the increase in temporal and spatial wet extent is larger than

the magnitude of the relative decrease of drought extent.

Comparison between Fig. 10 and Fig. 7 demonstrates

that there is a larger increase in the severity of wet ex-

tremes covering more regions as opposed to dry events.

In general, there is a north-to-south decreasing trend as

the magnitude of severity increases. As mentioned be-

fore, NAS has the largest increase of drought severity.

FIG. 9. As in Fig. 6, but for wet extremes.
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However, unlike dry events, the magnitude of severity

for wet extremes exhibits relatively large interscenario

difference, suggesting that the wet extremes in NAS are

more consistent with greenhouse gas emissions than dry

events. We can most likely expect a severity increase as

soon as the coming decades in the first half of the twenty-

first century (2009–51). Other regions in high latitudes,

including ALA, NEC, and NEU, exhibit strong wet

extremes, followed by parts of tropical Africa (i.e., EAF

and midlatitude regions including EAS, TIB, CAS,

ENA, CNA, and WNA). It is worth noting that regions

with decreasing means in seasonal precipitation (indi-

cated by SPI3; not shown here) are not projected to ex-

perience smaller wet severity. Instead, decreases in wet

conditions appear to manifest through a large decrease in

the maximum spatial extent, while the increase in wet

conditions will lead to increasing event severity as well as

maximum spatial and temporal extent.

The seasonal timing of the most severe wet events

changes little in the Northern Hemisphere across dif-

ferent spatial scales (Fig. 11). The lack of skill in esti-

mating the observed timing by the CMIP5 models in

AMZ, MED, SAF, and AUS makes it difficult to con-

clude timing shifts with high confidence. However, the

SAS region stands out with fairly high level of consensus

from more than 25% of CMIP5 models in changes in

timing. In the historical period the most severe wet

events at mid to large spatial scale occur during the

austral spring months (i.e., September–October). Summer

[June–August (JJA)] wet extremes only take up a small

part of the SAD curve at small spatial scales, which are

projected to change in the future under both RCP4.5 and

RCP8.5 emission scenarios. That is, during the late sum-

mer to autumn months, the severity of the most intense

wet events exceeds that of the spring events, especially in

the second half of the twenty-first century under the

RCP8.5 emission scenario. Compared with the expected

change of the dry events as discussed in section 4c(1),

southern China will be subject to large impacts that will

further impact agriculture yield production in the near

future. This is further discussed in section 5.

d. Projected future changes in concurrent events

Further insights can be obtained through coincidence

analysis of the concurrent dry/wet and hot/cold events.

We use the SAD clustering algorithm to first identify

precipitation extremes (dry/wet events). Based on their

temporal span and spatial extent, we then calculate the

aggregated temperature anomalies at the event level

based on STI. This enables us to further classify the dry/

wet extremes into three temperature categories: hot

(STI$ 1), normal (21, STI, 1), and cold (STI#21).

The fractional change in the joint occurrence of con-

current dry/wet and hot/cold events during the near-

term (2009–51) and long-term (2057–99) projection

period is compared with the historical period (1961–

2003) as a baseline. Results shown in Fig. 12 indicate

substantial increases in the occurrence of joint dry/hot

and wet/hot combinations for the projection period

under both RCP4.5 and RCP8.5 emission scenarios.

This indicates increased precipitation variability cou-

pled with the warmed temperature, as has already

been observed in the second half of the twentieth

century (Hao et al. 2013). Little change is found in the

FIG. 10. As in Fig. 7, but for wet extremes. Results showing the differences between RCP4.5 and RCP8.5 can be found in Fig. S6 in the

online supplemental material.
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occurrence of dry/cold events while a small decrease in

wet/cold event occurrence is expected in the Southern

Hemisphere, suggesting an asymmetric change in the

precipitation distribution with a longer upper tail. In

addition, changes in wet/hot extremes are more pro-

nounced than dry/hot extremes, especially in the Northern

Hemisphere. In the Amazon and Australia, little increase

in wet extremes is projected while increase in wet/hot ex-

tremes are expected. This illustrates that changes in the

rate of concurrent extremes can be driven by temperature

trends. This could also be caused by the changes in the

dependence structure between precipitation and temper-

ature under climate change, which has been demonstrated

by Zhou and Liu (2018) over China. The differences in the

occurrence between wet/hot and dry/hot extremes could

also be related to other factors, including large-scale

climate signals [such as El Niño–Southern Oscillation

(ENSO) and Pacific decadal oscillation; S. Wang et al.

2014; Sun et al. 2016], land–atmosphere coupling (e.g.,

Seneviratne and Stockli 2008; Lorenz et al. 2015), and

urbanization (e.g., Sun et al. 2014), which requires further

investigation into the complex relationship between these

factors and the occurrence of these concurrent extremes.

5. Conclusions and discussion

In general, the statistics of the spatial–temporal char-

acteristics of precipitation and temperature extremes

presented in this study suggest confidence in the CMIP5

archived models to reproduce the statistics of observed

dry/wet and hot/cold events in the historical period.

Results show significant changes in the frequency of

dry/wet and hot/cold events, as well as the severity and

spatial and temporal extent of the precipitation and

temperature extremes in the twenty-first century.

Trends in temperature in the twenty-first century are

dominated by a rapid mean temperature increase of

2.848 and 4.458C under RCP4.5 and RCP8.5 scenarios,

respectively. On average, the global mean precipitation

has a small wetting trend indicated by an average in-

crease in SPI3 of 0.17 and 0.23 by the end of the twenty-

first century under RCP4.5 and RCP8.5 scenarios,

respectively. In addition, regional precipitation vari-

ability is projected to increase. Increases in rainfall

variability are most significant in the tropics and

Southern Hemisphere, where the enhanced precipita-

tion distribution is indicated by intensification of dry and

wet extremes. Specifically, dry and wet events are pro-

jected to be more temporally correlated, since the

number of mid- to long-term events is projected to in-

crease while the number of short-term events is pro-

jected to decrease. Furthermore, analysis of the severity,

maximum temporal duration, and spatial extent shows

that for dry extremes, high-latitude regions such as

ALA, NEC, NEU, and NAS will decrease in maximum

severity across different spatial scales as well as the

maximum temporal and spatial extent. The Southern

Hemisphere, in contrast, will have more severe dry ex-

tremes with marginally larger severity. The most sig-

nificant changes for dry extremes are associated with the

timing when the most severe events occur. For in-

stance, large parts of Asia including NAS, EAS, and

SAS are projected to experience a shift in the timing

of dry extremes. For wet events, the maximum extent

of the extreme events will increase in most of the land

regions both temporally and spatially. The SAD curves

FIG. 11. As in Fig. 8, but for wet extremes.
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FIG. 12. Fractional changes in the occurrences of the dry/wet, hot/normal/cold, and concurrent ex-

treme events for the near term (2009–51) and long term (2057–99) in CMIP5 model simulations under

RCP4.5 and RCP8.5 scenarios.
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indicate a significant increase in the high-latitude re-

gions regardless of emission scenarios. On the other

hand, these regions show little changes in the timing of

themost severe events. However, the timing shift is most

evident in the tropical regions (e.g., SAS).

a. Changes in hydrological regime in response to
climate change

The International Panel on Climate Change’s Special

Report on Extremes (Karl et al. 2008; IPCC 2012) pre-

sented the scenarios of future shifts in temperature and

precipitation extremes. The simplified scenarios include

three aspects: shifted mean, increased variability, and

changed symmetry. Here we summarize the results of

this study under this framework in Fig. 13 based on the

analyzed characteristics of the extreme events in the

37-member ensemble of CMIP5 GCMs identified by

the SPI3 and SAD analysis. This is in contrast to the

IPCC SREX regional analysis of climate extremes that

is based on daily maximum temperature and daily pre-

cipitation rate. Consistent with IPCC (2012), the future

temperature distribution is projected to have a large

increase in the mean. In addition, the temperature dis-

tribution is projected to have a relatively smaller in-

crease in variability. The increase in spread is consistent

with an increase in the rate of the warming trend

(Huntingford et al. 2013), which is asymmetric with a

longer upper tail and relatively shorter lower tail. For

the precipitation projections, the magnitude of the

mean shift is smaller than the increase of variability.

Differences between the RCP4.5 and RCP8.5 emission

scenarios mainly lie in the fatter upper tail (i.e., larger,

longer, and more severe wet extremes). In addition,

precipitation projections change across different lati-

tudes. The Northern Hemisphere and the tropics will

experience a wetting trend with the former having

more wet extremes. This is consistent with the pro-

jected changes in heavy daily precipitation events in the

NorthernHemisphere found in IPCC(2012). TheSouthern

Hemisphere, on the other hand, will have more dry ex-

tremes with a slight decrease in the mean precipitation.

b. Concurrent temperature and precipitation extreme
events

It is well recognized that temperature and precipita-

tion are dependent on each other (Adler et al. 2008).

Changes in temperature and precipitation, together, affect

soil moisture, which in turn impacts precipitation and

temperature through land–atmosphere interactions. In the

past 60 years, there has been little change in soil moisture

drought events at the global scale (Sheffield et al. 2012).

However, it is likely that soil moisture drought in the

twenty-first century will intensify in parts of Europe,

central North America, Central America and Mexico,

northeast Brazil, and southern Africa (Seneviratne et al.

2012; Dai 2013; Orlowsky and Seneviratne 2013). This

could be explained by soil moisture–atmosphere cou-

pling (Jaeger and Seneviratne 2011) and the increasing

probability of occurrence of joint dry/hot events (shown

in Fig. 12).

c. Intermodel variability

In this study, we examine the fidelity of CMIP5

climate models to reproduce observed characteristics

of precipitation and temperature extremes. Our re-

sults suggest moderate skill in estimating the charac-

teristics of the dry/wet and hot/cold extremes. Larger

FIG. 13. Changes in the probability distribution of (a) temperature

and (b) precipitation extremes under different emission scenarios

(RCP4.5 and RCP8.5) in the Northern Hemisphere and (c) changes

in precipitation extremes across different latitudinal regions un-

der RCP4.5.
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discrepancies are found in the simulated timing of the

most severe events, as discussed in section 4. However, as

shown in Fig. 14 (corresponding statistics are provided in

Tables S3 and S4), most models agree on the direction of

change in temperature and precipitation in the twenty-first

century. A few models project the opposite direction in

precipitation change compared to the majority of models,

including the GFDL climate models (GFDL-ESM2M,

GFDL-ESM2G, GFDL CM3), CSIRO climate models

(CSIRO-Mk3, CSIRO-Mk3.6.0), and FIO-ESM. Regions

with the largest uncertainties in precipitation projections

are located mainly in Oceania and South America. This

highlights the need to improve the physical process rep-

resentation in global climate models and select a subset of

climate models to produce more robust future simulations

based on their historical performance (Evans et al. 2013).

d. Intercomparison of scenarios

For both dry and wet extremes, minor differences

appear in the direction of changes across models and

across scenarios, while larger differences appear in the

increasing magnitude under different emissions sce-

narios. Themedian of the CMIP5model projections for

the twenty-first century across the RCP4.5 and RCP8.5

scenarios examined agrees in more substantial changes

in extreme events as a result of the higher emission.

Precipitation changes under these two scenarios gen-

erally have the same sign, but higher changes are usu-

ally associated with higher greenhouse gas emissions.

In particular, model projections for three specific re-

gions (i.e., CAS, WAF, and SSA) fail to agree on the

direction of precipitation changes under both RCP4.5

and RCP8.5 scenarios.

e. Future work

The SAD analysis results depend on the definition

of the regions. In this study, we adopted the 19 sub-

continental regions defined by Giorgi and Francisco

(2000). However, some of the observed and modeled

events have spatial extents that span the boundaries of

FIG. 14. Projected changes in mean STI and mean SPI between 2057–99 and 1961–2003 under RCP4.5 and RCP8.5 emission scenarios in

global land regions.
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the regions. Further studies focusing on the migration

patterns of extreme events are recommended at con-

tinental scale. In this study, we investigated the con-

current precipitation and temperature events based

on SAD analysis of precipitation and temperature

indexes. The same method can be extended to in-

vestigate the joint probability of precipitation and

temperature events based on bivariate indexes. For

example, a bivariate extension of the SPI defined by

Mahony and Cannon (2018) can be applied to ana-

lyze concurrent temperature and precipitation ex-

tremes. Furthermore, since the total grid area is

dependent on latitude (at higher latitudes the area

of a grid cell would be smaller than around the

equator), further studies are encouraged to configure

the model resolution based on grid area, or conduct

sensitivity tests to examine how results might differ

across different regions if using a varying threshold

to identify the spatial clusters of extremes.

Climate extremes have posed unprecedented chal-

lenges to socioeconomic and natural systems through,

for example, agricultural production (Lobell et al.

2008; Johansson et al. 2015) and water availability

(Evans and Schreider 2002; Zhang et al. 2014). On

top of the mean state of the climate system (e.g.,

temperature), the increase in the occurrence of cli-

mate extremes will further pose more severe threat

on the agricultural production. One of the charac-

teristics that requires further investigation is the

impact of extreme events that occur at different

growing stages over different extents. Changes in

timing will have tremendous impact on yield pro-

duction since the yield loss due to early and late

season droughts can be vastly different (Jongdee

2003; Ma et al. 2013). For instance, our results suggest

that southern Asia will have less severe droughts in

the beginning of the growing season and more severe

wet extremes during the late growing season. This is

particularly critical since large areas in the southern

China region grow rice, which is vital to national food

security. While we recognize that estimated impacts

on projected yields are subject to large uncertainties

(Folberth et al. 2016), the results presented here

suggest potential impacts given the strong link be-

tween drought, heatwaves, and crop production. The

existence of model and scenario uncertainties, due to

the lack of knowledge on climate change impact,

accuracy of datasets and inadequate representation

of climate mechanisms, poses substantial threats in

these regions in terms of their climate adaptation

capacity and thus have to be taken into account by

policy makers to tackle the challenge of infrastruc-

ture planning and design.
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